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Phase diagrams of the triangular Ising antiferromagnet 
variational approximations 

A Malakist 
Institutt for Teoretisk Fysikk, University of Trondheim, 7034 Trondheim-NTH, Norway 

Received 13 April 1981 

Abstract. We derive an appropriate generalisation of Baxter’s variational method and 
define a sequence of variational approximations for ‘antiferromagnetic’ models on the 
triangular lattice. Expressions for the sublattice magnetisations are derived from a varia- 
tional principle for the partition function per site. We apply the method to the triangular 
antiferromagnet and obtain approximate phase diagrams in the temperature-field and 
temperature-magnetisation (density) planes. 

1. Introduction 

In 1968 Baxter developed a sequence of variational approximations for the monomer- 
dimer problem on the square lattice. This method was generalised to the Potts model 
(Kelland 1976) and to the square IRF (interactions-round-a-face) model with row and 
column reversal symmetry (Baxter 1978). In this latter generalisation, Baxter gave a 
graphical interpretation of the essential ingredients of these approximations, the 
‘corner’, ‘half-row’ and ‘half-column’ transfer matrices. He  showed also that the matrix 
equations defining the variational approximations can be given a graphical inter- 
pretation that enables one to avoid the tedious algebraic manipulations by which these 
approximations are derived. 

Recently the method has been applied to obtain the first 23 terms in the low- 
temperature expansion of the square Ising model in a field (Baxter and Enting 1979), 
the first 24 terms of the high-density series for hard squares (Baxter eta1 1980) and the 
entropy of hard hexagons (Baxter and Tsang 1980). A general feature borne out from 
these studies is that the approximations are quantitatively very good even when the 
dimension of the matrices is quite small. The approximations tend to the exact results as 
the size of the matrices tends to infinity (Baxter 1977, Tsang 1977). 

In this paper we present the generalisation of the variational method for ‘antifer- 
romagnetic’ models on the triangular lattice, i.e. models for which the lattice symmetry 
is broken at low temperatures. The matrix equations and their graphical interpretation 
will be given in the following section. In § 3 we derive the variational expression for the 
partition function per site, from which the magnetisation is obtained. A numerical 
procedure for solving the equations will be described in § 4. As an application we 
obtain, in 0 5 ,  phase diagrams for the triangular antiferromagnet in an external field. 

t Present address: University of Athens, Division of Mechanics, Panepistimiopolis, Athens 621, Greece. 
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2. Variational approximations for the triangular antiferromagnet 

Consider an Ising spin system (spin variables vi = *l, for brevity vi = *) on a triangular 
lattice with N sites for which the partition function can be written 

where each triplet (i, j ,  k)  in (1) surrounds an elementary triangle and w ( q ,  ai, ( + k )  is the 
Boltzmann weight of the interacting spin triplet (vi, vi, v k ) .  The summation in (1) is 
over all 2N spin configurations on the triangular lattice and the product extends over all 
elementary triangles (i, j ,  k).  Furthermore, we consider interactions for which the 
Boltzmann factor w ( a ,  b, c)  is unchanged by permuting a, b, c. The most general 
interaction of this form gives 

w(a, b, c)=exp((kgT)-'[&(a +b+c)+3J2(ab+bc+ac)+J3abc]} .  (2) 

The partition function per site in the thermodynamic limit is 

k =  lim 22". 
N+CC 

(3) 

In order to describe the triangular antiferromagnet with these interactions, one 
would have to divide the lattice into three sublattices (sublattices 1 ,2  and 3). However, 
since significant fluctuations occur between one of these sublattices (say, sublattice 3) 
and the other two (sublattices 1 and 2), we shall only distinguish between sites on 
sublattice 3 (defining a sublattice L') and sites on sublattices 1 or 2 (defining a sublattice 
L) .  Alternatively, we could derive the equations without identifying sublattices 1 and 2 
and then note that the equations permit solutions for which sublattices 1 and 2 are 
identified. This distinction between sublattices is dictated from the ground-state 
properties of the system; for certain values of H, J2, .I3 the system admits a ground state 
with spins on one sublattice down (-1) and on the other two up (+l). 

Let the sites on L be denoted by filled circles and the sites on L' by open circles. With 
the 'corner' segment in figure l (a )  we associate two 2" by 2" matrices A (  +) and A (  -). 
The spin variable a of A ( a )  is associated with the corner site of segment l (a )  which is a 
site of sublattice L (filled circle). The first index of A(a ) ,  say A ={Al ,  A 2 , .  , , , A,,}; 
A i  = *, is associated with the spin configurations along the side A 1 A 2  . . . A, of segment 
l (a )  so that A l  corresponds to a site on L, A 2  to a site on L' and so on. The second index 
of A(a ) ,  p ={p l ,  p 2 , ,  . , , p,,}, is associated with side p 1 p 2 . .  . p,, of segment l (a )  so 

a 

la1 

Figure 1. Lattice (corner) segments corresponding respectively to the matrices A ( a )  and 
B ( a )  (for n = 3) .  
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that p l  corresponds to a site on L', p2 and p 3  to sites on L and so on. The element 
A,,(a) of A ( a )  is the combined Boltzmann weight of segment l (a ) ,  summed over all 
interior spins. With the 'corner' segment in figure l ( b )  we associate two 2" by 2" 
matrices B ( a )  (the spin variable a of B ( a )  is now associated with a site on L', open 
circle). From figure l ( b )  one can see that the matrices B are invariant under trans- 
position 

B ( a )  = BT(a) .  (4) 

Similarly eight 2" by 2" matrices F(a ,  b )  and G(a, 6)  (a, b = i) are associated with 
the 'half-row' segments in figures 2(a) and 2(b) respectively (both spin variables a and b 
of F as well as the first spin variable of G(a, b )  are associated with sites on L, whereas 
the second spin variable b of G(a, b )  is associated with a site on L') .  Again it is easily 
seen that 

F ( a ,  b )  = FT(b,  a ) .  ( 5 )  

C b n b 
(01 ib I 

Figure 2. Lattice segments for the matrices F(a ,  b )  and G(a, 6 )  respectively. 

Generalising the two graphical equations of Baxter and Tsang (1980) for the 
ferromagnetic n , n model, we obtain for the present case six graphical equations shown 
in figures 3 and 4; their matrix equations are given below as equations (6) and (7): 

1 GT(b, u )AT(b )A(b )G(b ,  a )  = &B4(a) 
b 

1 w ( a ,  b, c )F(a ,  c ) A ( c ) G ( c ,  b )  = 7 7 : / 2 A ( ~ ) G ( ~ ,  b ) B ( b )  (7a) 
C 

Equations (6a),  ( 6 b )  and ( 6 c )  correspond to the graphical equations in figures 3 ( a ) ,  3 (b)  
and 3(c) respectively; figures 4(a) and 4(b) give the same equation, namely equation 
(7a) with v1 = v2. Finally, equation (7b)  corresponds to the graphical equation of figure 
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\ ib l  

\ / \ 

Figure 3. Graphical equations corresponding Figure 4. Both graphical equations (4a) and (46) 
respectively to equations (6a),  ( 6 b )  and (6c). One correspond to equation (7n)  (read ( 4 a )  anticlockwise 
may read these equations clockwise or anticlockwise. to obtain ( 7 a ) ,  read (46) clockwise and interchange a 

and b to obtain (7a)) .  Finally, (4c) corresponds to 
equation ( 7 b )  (read anticlockwise to obtain ( 7 b ) ,  
if one reads clockwise the transpose of ( 7 6 )  is 
obtained). 

4(c). The partition function per site is given in terms of the factors &, &, t3, v l ,  772 and 
773 by 

k = { (77177~773) / (515253))1 /~  771 = 772. (8) 

Using an argument similar to that given by Baxter and Tsang (1980) (see also Baxter et 
a1 1980) we can clarify equation (8): Each graphical equation in figures 3 (4) states that 
the unnormalised probability distribution of the spins on the left of the LHS is the same, 
to within a normalisation factor [ (77 * '2 ) ,  with the unnormalised probability distribution 
of the spins on the left of the RHS. Normalisation of these probability distributions will 
affect the factors 6 and 77 but not the ratio (~1772r/3) / (&&&).  There are 2n + 1 ( n  + 1) 
more sites on the LHS than on the RHS in each graphical equation 3 (4), hence, three 
more sites contribute to the numerator than to'the denominator of ( 7 1 7 7 2 7 3 ) / ( & & & ) .  

When n is large each extra site contributes a factor k, so that equation (8) is satisfied. 
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It may be remarked that equation (6c) can be obtained by post-multiplying equation 
(76) by AT(b)F(b, a) ,  summing over b and then using the transpose of equation (7a) on 
the LHS and equation ( 6 a )  on the RHS . Identifying the resulting equation with equation 
(6c), we find 

5 3  = ( d ’ 2 / T : ’ 2 ) 5 1 .  (9) 

It also follows that in order to solve the equations we can use only one of ( 6 a )  and (6c). 
Thus, equations (6b) ,  (6c), (7a) and (7b) define the matrices A,  B, G and F to within 
normalisation factors. By fixing the normalisation of these matrices, t2, t3, v1 and 
are determined and hence k is obtained from (8) and (9). 

3. Magnetisations 

In this section we give a variational expression for the partition function per site and 
derive expressions for the sublattice magnetisations. Let us define: 

r2 = 1 Tr{AT(a)F(a, b)A(b)AT(b)F(b, a)A(a))  
ab 

r3 = Tr{B6(a)} 
a 

r4 = 1 Tr{A(a)G(a, b)B2(b)GT(a ,  b)AT(a)} 
ab 

r5 = 1 w(a ,  6, c) Tr{G(a, c)B(c)GT(b, c)AT(b)F(b ,  a)A(a)}. ( loe l  
abc 

It is easily verified from (6), (7) and (10) that: 

51 = r d r 1  5 2  = r d r 3  5 3  = r4 / r i  

77:” = vi’2 = r 5 / r 4  vi’2 = r5 / r2 .  

For instance the first of ( l l a )  is obtained by post-multiplying ( 6 a )  by A(a)AT(a) ,  
summing over a, taking traces and using (loa) and ( lob) .  The partition function per 
site, equation (8), can then be expressed in terms of the r, namely 

The RHS of (12) is stationary in A,  B, F and G (as one can easily verify by differentiating 
with respect to the elements of these matrices); it follows that (12) is a variational 
expression for k .  

The magnetisation per site, M, is obtained using the thermodynamic formula 

M = kgTd(ln k) /aH.  (13) 

The derivative of k with respect to H is evaluated from (12), considering A,  B, F and G 
as constants since this expression is stationary in these matrices. After some algebraic 
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manipulations we find (using (6), (7) and (10)): 

Expressions (15) and (16) can also be given a straightforward graphical interpretation 
(see Baxter and Tsang 1980). m and m' are identified as the sublattice magnetisations 
corresponding to sublattices L and L'.  

4. Numerical procedure 

Equations (6) and (7) can be solved by the Newton-Raphson method, or any other 
method for solving systems of nonlinear equations. However, initial guesses are 
required in any such method. Baxter (1978) has described an iterative procedure for 
solving similar equations in the non-critical region. The main virtue of his method is 
that it can be used to obtain reasonable initial guesses in a systematic way; these guesses 
can then be used to solve the equations by the Newton-Raphson method. We therefore 
proceed to adapt his method to the present model. 

Let us define 

6 ( a ,  b )  =A(a )G(a ,  b )  (17a) 

A(u)  = A ( u ) A ~ ( u ) .  (17b) 

Using (17a) and (17b) one can rewrite equations (6) and (7) in terms of A, B, F and 6. 
Furthermore, it is easily verified that our equations are invariant under the trans- 
formations 

A(,) + R ( a ) A ( a ) R T ( a )  B ( u ) +  Q ( u ) B ( u ) Q ~ ( u )  (18a) 

F(a,  b )  + R ( a ) F ( a ,  b ) R T ( b )  &(a, b ) + R ( a ) & ( a ,  b)QT(b)  (18b)  

R ( a )  and Q ( a )  being orthogonal matrices. It follows that one can use a representation 
in which B(a)  and A(a)  are diagonal. However, for the procedure given below only the 
diagonal property of B ( a )  is essential, although for convenience we shall also consider 
A(a) to be diagonal. Let us further define two 2"+l by 2"+l matrices U ( b )  and two 2"+l 
by 2" matrices E(b)  by: 

(19a) 
w(+, b, + ) F ( + ,  +) 
w(-, b, +)F(-, +) 

w ( + ,  b, - ) F ( + ,  -1 
w(-, b, -m-, -1 U ( b )  = ( 

and 

Using these, equations (7a) and (6b)  can be written as 

U(b)E(b)  = 7#2E(b)B(b) 

ET(b)E(b)  =I .  
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Since B ( b )  is diagonal equation (20a) implies that each column j of E(b)  is an 
eigenvector of U ( b )  with eigenvalue r ~ : ' ~ B ~ ~ ( b ) .  Equation (20b)  states that the eigen- 
vectors of the symmetric matrices U ( b )  should be chosen orthonormal. Defining also a 
2"+' by 2"+' matrix S by 

(21) 

we find, using ( 6 c )  and the diagonal property of A, 
A?(+ 1 = (52/",, i = 1 , 2 , .  . . , 2 "  

i = 1 , 2 , .  . . , 2 "  

(22a) 

(22b) AS( - 1 = (52/53)(SST),, j = 2" + i. 
The matrices F(a ,  b )  can be determined from (7b), i.e. 

F(a,  b )  = 7:'2A-'(a)(x w ( a ,  b, c ) d ( a ,  c )B(c )dT(b ,  c ) )A- ' (b ) .  (23) 
C 

Although the natural sequence of these approximations is to take the matrices A, B, 
F and d as 2" by 2" ( n  = 0, 1 , .  . .), it has been found in previous studies (see for 
instance, Baxter and Tsang 1980) that this is not necessary. We shall therefore define 
the nl xn2 approximation as follows: A(+), B(+), F ( + ,  +) and &(+, +) are n l  x n l ;  
F ( + ,  - )  and G(+,  - ) ( F ( - ,  +) and &-, +)) are 1~1x112 ( n z x n l ) ;  A(-), E l ( - - ) ,  
F (  -, - )  and d (  -, - )are  n 2  x n2;  A( - )  andB(  - )  are n2 x n2 matrices. The numerical 
procedure can now be outlined as follows. 

(i) Give some initial values to F ( + ,  +), F ( + ,  - )  and F ( - ,  -). From (19a) 
determine U (  - )  and U (  +) and obtain their eigenvalues in decreasing order and the 
corresponding orthonormal eigenvectors. 

(ii) For each value of b, -( +), there are 2n2 (2nl) eigenvalues. Select the n2 ( n l )  
first eigenvalues of U (  - ) (  U (  +)) and their eigenvectors. 

(iii) Fix the normalisation of B (i.e. Bll( - )  = 1) to obtain 77:'' and hence identify 
the diagonal elements of B(-)  (B(+)) with the first n2 (n l )  eigenvalues of U ( - )  
(U(  +)) divided by 77 :'2. 

(iv) Fix the normalisation of d (i.e. dll( +, -) = 1) and thus using the selected 
eigenvectors and (19b) obtain t2 and d(a, b ) .  

(v) Fix the normalisation of A (i.e. Al l (  +) = 1) and using (22) obtain t3 and A(b). 
(vi) Fix the normalisation of F (i.e. F11( + , +) = 1) to obtain q3 and F ( a ,  b )  from 

(23). 
Having now new values for the matrices F(a,  b )  one can go to step (i) and repeat, 

until sufficient numerical accuracy is achieved. As has been pointed out by Baxter and 
Tsang (1980) such procedures can be also used to obtain initial guesses for higher 
approximations by keeping in step (ii) more eigenvalues and eigenvectors and modify- 
ing 112 ( n l )  accordingly. 

The normalisation of B, a, F and d is dictated by numerical convenience. The 
choice given in the parentheses above is found convenient for nearest-neighbour 
antiferromagnetic interactions in weak fields, for example. 

5. Phase diagrams of the triangular antiferromagnet 

We consider the triangular antiferromagnet (J3 = 0, J2 < 0; also we take H 3 0, since 
the H s 0 case follows by symmetry) and obtain phase diagrams in the (T" ,  ZY") 
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(T*= kBT/IJ21; H*=H/IJ21) and in the ( T * , p )  ( p  =(1-M) /2  is the density of 
particles) planes. This model is interesting from both theoretical and experimental 
points of view (Fisher 1967). In particular, its lattice gas equivalent provides a 
reasonable description for absorbed systems like helium or krypton on graphite 
(Ostlund and Berker 1979). 

In zero field, the model is exactly soluble (Houtappell950) and there is no transition 
at any finite temperature, due to the infinite degeneracy of the ground state (Wannier 
1950). With the application of a field H* < 6, the ground state is triply degenerate, i.e. 
there exist three equivalent ordered configurations. Such a ground-state configuration 
has all spins on one sublattice (say L') down (-1) and all spins on the other two 
sublattices (defining L )  up (+l). At 'low temperatures' there exists an antiferromagnetic 
phase in which two of the sublattice magnetisations are equal to one another but 
different from the third. At some 'higher temperature' a transition occurs to a 
paramagnetic phase in which the three sublattice magnetisations are equal to each 
other. It was first suggested by Domb (1960) that the two phases are separated on the 
(T*,  H" )  plane by a line of critical points running from the critical field at zero 
temperature to the origin. Qualitatively, this phase diagram is now well understood, 
since its two 'end-points' are known and its slope at the critical field is related to the 
critical activity zc of the hard-hexagon model (recently solved by Baxter (1980)) by 

A =cl d H *  ~ * = 6  = -2 / lnz ,=-2 / ln{~(11+5h)}=-0 .831 . .  . . (24) 

Furthermore, from symmetry and scaling arguments it is expected (Kinzel and Schick 
1981) that the slope of the phase diagram at zero field (dT*/dH"lH*=O) is infinite. 

Quantitatively the phase boundary is less well known and there have been several 
attempts to estimate it (Burley 1965, Metcalf 1973, Schick eta1 1977, Kinzel and Schick 
1981, D6czi-RCger and Hemmer 1981). Such estimates can be obtained from the 
variational approximations. In the paramagnetic region the solution of equations (6) 
and (7) is expected to satisfy the symmetry properties 

A ( a )  =Ar(a)  = B ( a )  

G(a, b )  = F(a ,  6 )  

51 = 6 2  = 5 3  771 = 773 

& f = m = m '  

and our equations reduce to those of Baxter and Tsang (1980). Therefore, we search 
for two physically interesting solutions, the paramagnetic solution (satisfying ( 2 5 ) )  and 
the antiferromagnetic solution (not satisfying (25)). Within an approximation, each of 
these solutions exists in the region where it maximises k, but also a little outside this 
region. The two solutions give, in general, different values (where they both exist) for 
the partition function per site, k ,  and k ,  respectively. Thus, we can determine the phase 
boundary by the condition k ,  = k ,  (in the paramagnetic region k ,  > k,, whereas in the 
antiferromagnetic region k ,  > k,).  

The 1 x 1 and 2 x 1 approximations for the phase boundary are shown in figure 5 ( a ) ,  
together with the Kikuchi approximation. The 1 X 1 approximation may be considered 
as equivalent to the Kramers-Wannier approximation (Kramers and Wannier 1941, 
Baxter 1978) and is comparable in accuracy to the Kikuchi approximation. It can be 
seen from figure 5 ( a )  that the variational approximations (as well as the mean-field and 
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H* H* 

Figure 5. Phase diagrams of the triangular Ising aqtiferromagnet in temperature-field 
plane. ( a )  Full curve, this work: 2 x 1 approximation; broken curve, this work: 1 x 1 
approximation; dotted curve, Burley (1965): Kikuchi approximation. ( b )  Full curve, this 
work: accurate part of the 3 x 2 approximation; broken curve, D6czi-RCger and Hemmer 
(1981): interface approximation; dotted curve, Kinzel and Schick (1981): ‘phenomenolo- 
gical-Nightingale’ approximation; points, Metcalf (1973): Monte Carlo. 

Kikuchi approximations) fail to reproduce the exact zero-field result. However, the 
2 x 1 approximation shows that the trend of the variational approximations is correct, 
but the shape of the phase diagram in weak fields is rather peculiar. As a result of this 
deficiency we have not been able to obtain accurate estimates near zero field. The 
numerical results for the 2 x 1 , 2  x 2 and 3 x 2 approximations are given in table 1. The 

Table 1. 
~ ~~ ~~~~~ 

2 x 1 approximation 2 x 2 approximation 3 x 2 approximation 

H* T* M. T* Ma T* Ma 

0.5 0.796 0.117 
1 1.007 0.183 
1.5 1.170 0.227 
2 1.280 0.264 
2.5 1.346 0.296 
3 1.364 0.326 
3.5 1.333 0.355 
4 1.244 0.384 
4.5 1.083 0.412 
5 0.817 0.435 
5.5 0.428 0.444 

0.857 0.095 
1.015 0.176 
1.167 0.226 
1.275 0.264 
1.338 0.296 
1.357 0.326 
1.328 0.354 
1.241 0.383 
1.081 0.411 
0.817 0.435 
0.428 0.444 

0.857 0.094 
1.015 0.176 
1.166 0.226 
1.272 0.264 
1.333 0.297 
1.348 0.326 
1.315 0.353 
1.225 0.378 
1.061 0.402 
0.795 0.422 
0.414 0.428 
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1. 

T *  

values of the slope A predicted by the 2 x 2  and 3 x 2  approximations are A Z x 2 =  
-0.857.. , and A 3 x 2  = -0.829.. . , in good agreement with the exact value (24). 
Apparently, the critical temperatures given in table 1 for the 3 X 2 approximation are 
accurate to the second decimal place (for H* = 1,2 and 3 this was verified using the 
3 x 3  and 4 x 3  approximations). Figure 5 ( 6 )  shows the accurate part of the phase 
diagram obtained from the 3 x 2 approximation and those obtained by the interface 
method of Muller-Hartmann and Zittartz (1977) (D6czi-RCger and Hemmer 1981), 
the phenomenological scaling approach of Nightingale (1976) (Kinzel and Schick 198 1) 
and the Monte Carlo calculation (Metcalf 1973). The comparison favours the ‘3 x 2’ 
and the ‘phenomenological’ diagrams, in particular for H* > 3 where their agreement is 
excellent. 

Regarding the nature of phase transitions the variational approximations give, in 
general, first-order transitions with jumps in magnetisation. These jumps are small in 
magnitude and tend to zero in higher approximations, so that the CO x CO solution of 
equations (6) and (7) would yield, as expected, second-order transitions. At  the critical 
points the magnetisation of the antiferromagnetic solution M ,  (given in table 1) is more 
accurate than that of the paramagnetic solution. The limiting value of the critical 
magnetisation as we approach the critical field (If,* =+6) follows from the critical 
density of the hard-hexagon lattice gas (Baxter 1980) 

MC=1-2p,=0.447.. . (pc=(5-d?)/1O=0.276., ,). (26) 
The 2 x 2 and 3 x 2 variational approximations yield M ,  - 0.44 and M, - 0.43 respec- 
tively, in good agreement with (26). The limiting value (26) determines one ‘end-point’ 
(i.e. (0, M,)) of the (T”, M )  phase diagram. The other ‘end-point’ is not known, but it is 
expected (Kinzel and Schick 1981) to be the origin (0,O). The corresponding ‘end- 
points’ on the (T*,  p )  plane are: (0, pc) and (0,0.5). In figure 6 the 2 x 2 approximation 
for the (T”, p )  phase diagram is shown together with the phenomenological approxi- 
mation. Again only in the region corresponding to fields H * < 3  do they differ 

Figure 6.  Phase diagram of the triangular lattice gas in temperature-density plane. The 
dotted curve shows the ‘phenomenological-Nightingale’ approximation of Kinzel and 
Schick (1981). The full curve corresponds to the 2 x 2 approximation (table 1); the dotted 
part indicates the region where the approximation becomes inaccurate; the chain part shows 
a possible extrapolation. 



Phase diagrams of Ising antiferromagnet approximations 2777 

significantly. As pointed out by Kinzel and Schick (1981) the phenomenological 
approach has difficulties near zero field: it yields a finhe slope for the (T* ,  H*) diagram 
and a non-zero critical magnetisation as we approach zero field. On the other hand, the 
variational approximations are expected to converge (as nl ,  n2 + CO) to the exact values, 
but near zero field they do so in a rather curious fashion (see figure 5 ( a ) ) .  From figures 
5 ( b )  and 6, it can be seen that the deviations of the ‘variational diagrams’ from the 
‘phenomenological diagrams’ are consistent with the predictions of infinite slope and 
zero critical magnetisation at zero field. Apparently, for 0.5 <H* < 3 the ‘variational 
diagrams’ are more accurate than the ‘phenomenological diagrams’. 

In summary, we have presented a generalisation of Baxter’s variational method and 
utilised it to obtain the phase diagrams of the triangular antiferromagnet. Away from 
zero field the diagrams are accurate and for H” > 3 they are in excellent agreement with 
those of the phenomenological method. 
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